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TURBULENT NATURAL CONVECTION FLOW AND HEAT TRANS­
FER IN AN INCLINED SQUARE ENCLOSURE***

Man-Heung Park" and Jae-Heon Lee""

(Received August 3, 1991)

Numerical analysis was performed for the two-dimensional turbulent natural convection in an inclined enclosure. The enclosure
has two walls which one is heated and the other cooled, and has the other two walls of the linear temperature distributions. The
inclined angle is equal to zero when the wall of linear temperature was horizontal and increases counter-clockwise. The mean
continuity, mean momentum and mean energy equations have been obtained by using the conventional time-averaging procesure.
The turbulent ::nodel has been applied a k-c two equation model of turbulence similar to the one proposed by the Launder and
Spalding. Numerical results were studied for a series of inclined angle, ranging from O' to 60' and for a Grashof number range of
6 x 106 -108. The average heat transfer rate on hot wall is shown maximum value at 30' regardless of Grashof number taken here.
When Gr;;:o, 5x 10' and 0;;:0, 45', the flow region of whole enclosure became a significant turbulence.
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: Empirical turbulence model constants
: Production of turbulent kinetic energy by shear
: Acceleration of gravity
: Grashof number (Eq. 3d)
: Turbulent kinetic energy
: Width and height of enclosure
: Nusselt number (Eq. 14 and Eq. 15)
: Pressure
: Effective pressure (Eq. 2)
: Prandtl number
: Source term
: Temperature
: Flow velocity
: Cartesian Coordinate
: Thermal diffusivity
: Coefficient of thermal expansion
: Exchange coefficient
: Dimension of the first node from the wall
: Dissipation rate of tubulent kinetic energy
: Inclined angle
: Von Karman's constant
: Characteristic length scale of turbulence
: Molecular viscosity
: Turbulent viscosity
: Kinematic viscosity
: Denisty
: Prandtl-Schmidt number for the turbulent

kinetic energy

Or : Turbulent Prandtl number
0, : Prandtl-Schmidt number for the dissipation

rate of turbulent kinetic energy
¢ : General dependent variable

Superscripts

* : Physical quantity
: Average value

Subscripts

C : Cold wall
(:/f : Effective value
If : Hot wall
L : Wall of linear temperature
max : Maximum value
o : Reference quantity

1. INTRODUCTION

The buoyancy-driven flow in an enclosed cavity has many
practical application. The above process include nuclear­
reactor insulation, ventilation of rooms, solar-energy collec­
tion and crystal growth in liquids. There is an ever increasing
amount of research on confined natural convection. Since
Fraikin et al.(1980) applied the k-E model proposed by
Launder and Spalding to analyze the turbulent natural
convection problem in a square enclosure, some investiga­
tions on turbulent natural convection in an enclosed space
have been carried out, Markatos et a!. (1984) presented
numerical solution up to Rayleigh number of 1016 for a square
enclosure. They reported that the range of core temperature
decreased at first to the Rayleigh number of 108 and then
increased again up to Rayleigh number of 1016

• In the above
investigation, the Prandtl number of the test fluid was chosen
similar to that of air. In addition, they looked on the flow
region as turbulent one beyond the Rayleigh number of 106

•

Ozoe et al. (1985) examined numerically the turbulent natural
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Fig. 1 Schematic representation of inclined square enclosure

(5)

(6)

Where Ileff ( = III + 1) is the effective viscosity, and r¢ is the
exchange coefficient for the transport of property ¢> ( = T, k
and E). The exchange coefficient of energy, turbulent kinetic
energy and rate of dissipation of turbulent energy are rT.ef/=

(Il'; aT) + 01Pr), r.,eff= (/i'; a.) +1 and r"eff= (1l11 a,) +1,
respectively.

The source term, S, in the governing equation are as fol­
lows:

For a steady two-dimensional flow, the following govern­
ing equations represent the conservation of the dimensionless
time-averaged quantities. The same two-dimensional k-E
model for turbulence as employed by Farouk 098}) , Fraikin
et al. (980) and Ozoe et al. (1985) has been used for present
study.

0)

2. MATHEMATICAL FORMULATION
AND METHOD OF SOLUTION

2.1 The Governing Equation

The system for present study is depicted schematically in
Fig. 1. All fluid properties are treated as constant with the
exception of the density appearing in the body force terms.
For this term a linear variation of density with temperature
is assumed, according to the following equation.

Some simplification of the resulting body force terms is
represented by defining an effective pressure, P'.

convection in a square enclosure filled with water. They
considered that the flow region became turbulence beyond
the Rayleigh number of 10~o They also reported that the
solution using turbulent Prandtl number of 4 and the constant
C j of 1.296 in the E equation showed fairly good agreement
with their experimental data. Davidson(1990(a), 1990(b»
applied the modified form of a low Reynolds number k- 10

turbulence model and the hybrid turbulence model (k-E
model +algebraic Reynolds stress (ASM) model) to analyze
the turbulent natural convection problem in a tall two­
dimensional cavity of 5: 1 aspect ratio. Ideriah (980)
presented some numerical results with the k-E model for
mixed turbulent convection in a rectangular space. He
applied the wall function proposed for the forced convection
to predict turbulent quantities. For a horizontal circular
cylinder, Farouk (981) employed the k-E model to obtain
numerical solution of the turbulent natural convection. He
had question about the use of wall function to analyze the
turbulent flow by buoyance in enclosure. Nallasamyl°) revi­
ewed the turbulence models and their applications to the
prediction of internal flows. He said that the k-E model is
used in majority of all the 2-dimensional flow calculations
reported in the literature. So far the laminar natural convec­
tion in the inclined enclosure has been studied widely for
many engineering applications. Some studies are given by
Symons and Peck(984) and by Goldstein and Wang(984).
But the study on the turbulent natural convection in an
inclined enclosure has been rarely presented.

In present study, the phenomena of turbulent natural con­
vection in an inclined square enclosure have been investigat­
ed numerically with the k-E turbulent model. The enclosure is
heated differently along the two opposite walls and the other
two walls are maintained linear temperature. The hot and
cold walls are considered to be isothermal. The inclined angle
is zero when the hot and cold walls locate vertically. The
inclined angle increases counter-clockwise. To emphasize on
the effect of inclined angle, the parameters such as turbulent
model, empirical constant, range of the Grashof number, and
the Prandtl number are selected same as Fraikin et. al.
(980) .

Dimensionless variables are then formed as follows;

_ T'- To' x' y'
T-2 T

H
"- Te"' x= Llz' y= LI2 (3a)

(8a)

(8b)

(8c)
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The turbulent viscosity, Il" is related to k and E as follows;

Table 1 The constant used in the turubulent modeling

S G Gr III ( aT e aT. ).= ~E~----- -cos +~m e
16 6r oy ox

E E
2

S,=CIkG~C2k-

E Gr III (aT aT.)C3k16o;.- ayCOS e+ ox sm e

( au )2 (ov)' ( au ov )2G=IlI'{2 --- +2 - + -+- }ox oy oy ox

(Sd)

(Se)

(Sf)

(9)
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Fig. 2 Grid illustration in the lower left part of the enclosure

Rodi (1975) discussed the conditions under which C~ could be
considered constant. Numerical values for Cp,CI,C" 6r,6.

and 6, are taken as recommended by Launder and Spalding
(1974). The constant C3 in the buoyancy term of above
equation has been adopted from Fraikin et al. (19S0). They
are given in Table 1.

The following boundary conditions have been used;

T=l, u=v=k=O at x=O (lOa)
T=~l, u=v=k=O at x=2 OOb)
T=I-x, u=v=k=O at y=O and y=2. (10c)

The time-averaged rate of dissipation of turbulent energy,
E, is proportional to k3l2 / I. Since both k and 1 approach zero
at the wall, the boundary condition for E is undefined. The E

equation is solved only in a reduced domain excluding the
walls. In the present study, the E value near the wall is fixed
same as previous investigators (Fraikin (1 9S0), Markatos and
pericleous (984) and Ozoe et al (1 9S5) ), thus

(11)

where subscript 1 denotes the nearest grid point from the
wall. x is Von Karman's constant having a value of 0.42 and
L1 is the dimension of the first node from the wall.

2.2 The Solution Procedure

The governing equations, together with the appropriate
boundary conditions, are cast into the finite volume method.
The discretization equations are derived by the method of
control volume formulation (Patankar 19S0). The final di­
scretization equations have a generalized form on a gird
point P.

(12)

where ¢ denotes u, v, T, k or E and the subscript nb denotes
the neighbor grid point of P. The summation is to be taken
over all the neighbors. In the present study, there are four
neighbors. The discretization equations are solved by a finite
difference calculation procedure called SIMPLE (Semi Im­
plicit Method for Pressure Linked Equation) which is descri­
bed in detail by Patankar (19S1).

A 32 x 32 grid was employed with a denser nodal point near

the walls as shown in Fig. 2. The 42 x 42 and 52 x 52 grid were
tested for some selected situation. It was found that the grid
dependency on the calculated results was within 5% as a
whole. In actual computations, almost SOO iterations were
needed to get convergent solution. For high Grashof number,
the solutions of low Grashof number were used as initial
values in the iterative procedure. We believed that the con­
vergence were obtained when the heat balance of the system
were agreed within 0.1% and the values of each quantities
didn't change within effective four digit during 10 more itera­
tions.

3. RESULTS AND DISCUSSION

Numerical solutions were obtair.ed in dimensionless form
of velocities, temperature, pressure, stream function, turbu­
lent kinetic energy, rate of dissipation of turbulent energy,
turbulent viscosity, local Nusselt number and average Nus­
selt number. The results are presented for sixteen combina­
tions of the Grashof numbers (6 x 106

, 1X 107
, 5 X 107 and 1x

108
) and the inclined angles (0", 30', 45' and 60'). To check

the validity of present numerical results, at first, solutions at
zero inclined angle were compflred witht that of Fraikin
(19S0) as shown in Table 2_ Fairly good agreement has been
achieved even though the methodology and the gird distribu­
tion had been different each other.

3.1 Streamlines

The stream function was obtained from velocity field by
evaluating the integral along constant x lines,

Table 2 Comparison of some important quantities between Pres­
ent and Fraikin et al. (1980) at zero inclined angle

Gr
NUH NUL /It ,max

Present Fraikin Present Fraikin Present Fraikin

6x 106 12.0 12.2 5.92 6.64 3.73 3.19

107 14.3 14.2 6.89 7.53 4.73 4.01

5x 107 24.1 22.4 11. 0 10.6 8.63 7.90

108 29.3 26.1 13.0 11. 7 9.87 9.58
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Ra = 6 x 10 6 Ra = 1 x 10 7 Ra = 5 x 10 7 Ra = 1 x 10 8

Fig. 3 Numerical Streamlines

(13)
lated and rotates reverse to the base flow. Similar description
can be done near the bottom corner.

and '1'=0 along the walls. In Fig. 3 sixteen plots of the
streamlines which indicate the mean flow pattern are present­
ed. The difference~;between each neighbor contours are 20 in
'I' except the central region and the corners where the
counter-clockwise flow exists. To show the secondary flow in
the core of enclosure, two streamlines of arbitrary value are
presented. The effects of inclined angle on the patterns of
streamlines are similar each other for all Grashof numbers
taken here. When /I:S;; 45", there are the strong clockwise base
flow near the wall region and the weak secondary flow in the
core region. When 8=60", this secondary flow disappears so
that the strong base flow extends to the core region. The
maximum stream function which indicates the intensity of
the base flow increases 1.7, 2.0 and 3.0 times as large at the
inclined angles of 30', 45' and 60', respectively as that of the
zero inclined angle Except zero inclined angle, the counter­
clockwise flow occurs in the top and bottom corner. These
phenomena are considered as a peculiar influence of the
inclined angle. It is believed that this would occur in the
inclined enclosure because of the following facts: the hotter
fluid started from the hot wall moves up continuously along
the inclined top wall of linear temperature. But this upward
fluid feels cold near the top corner whose temperature is
almost same as that of the cold wall. Therefore, the buoyance
force of upward flow decreases so that fluid can not go up
anymore. Consequently the fluid near the top corner is iso-

3.2 Temperature Distribution

Sixteen plots of isotherms are shown in Fig. 4. The dimen­
sionless temperature differences between each isotherm are
0.1. As the Grashof number increases, the temperature gradi­
ent becomes high near the wall at all the inclined angles
taken here. The influence of inclined angle can be described
similarly independent of the Grashof number. At the inclined
angle of zero, the horizontal stable stratifications are shown
and the range of temperature is large in the core region. As
the enclosure exist the angle of inclination, this stratified
phenomena disappear, and then the range of temperature
becomes small in the core region. Finally at the 60' of the
inclined angle, almost zero dimensionless temperatures which
indicate the mean value of temperature between the hot and
cold walls occupy the core region.

3.3 Turbulent Viscosity

The distribution of dimensionless turbulent viscosity, f-lt,

are shown in Fig. 5. The nearest contour at the wall has the
value of 1. The values of inner contours are higher by 1 than
those of outer contours, so that one can see the maxima near
the top corner and the bottom corner. In the core region, the
values of contours decrease by 1 toward the center of the
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Ra= 6x 10 6 Ra = 1 X 10 7 Ra = 5 X 10 7 Ra = 1 X 10 8

6=00

Ra = 6x 10 6

Fig. 4 Numerical isotherms

Ra = 1 X 10 7 Ra = 5 X 10 7

Fig. 5 Numerical contour maps for turbulent viscosity
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angle. the maximum values of turbulent viscosity. /1l.max. and
the area portion being occupied by the significant turbulence
are listed in Table 3.

The existence of the inclined angle makes the turbulence
even strong. For a given Grashof number the p,.max occurs at
the inclined angle of 300. while the area portion of the signifi­
cant turbulence is maximum at the inclined angle of 45'.

It can be seen in Table 3 that. when Gr 2 5x 107 at the same
inclined angle. the /11.max is higher with the Grashof number
but the area portion of the significant turbulence stays with
the Grashof number. Similar results were presented in Frai­
kin (980) at the zero inclined angle. When Gr 2 5 x 107 and B
245'. the whole flow region in the enclosures becomes the
significant turbulence.

X 108

9.87

55.4

17.6

95.0

15.2

00.0

13.3

00.0

Table 3 The maximum value of dimensionless turbulent viscos­
ity and the area portion of the significant turbulence in
enclosures

~:;r 6x la' 1x 107 5 X 107 1
--f---~

J-Lt,max 3.73 4. 73 8.62
0'

portion(%) 31.4 50.4 55.4

30'
fJ-t,max 4.74 :3.97 12.4

portion(%) 90.1 90.9 95.0

ji-t,max 4.68 5.91 11.6
45' ._-e--

portion(%) 95.0 98.3 100.0 I
-

60' t /-It.max
4.68 5.76 10.2

__. portion(%) I 81.0 91.5 100.0 1
i-

3.4 Turbulent Kinetic Energy

enclosure. The /11 indicates the ratio of turbulent visosity to
molecular viscosity. Since peff = /11 + L in the region where /11

<1 the molecular viscosity would have priority over turbu­
lent viscosity to determine flow characteristic. Although the
flow region where /11 =0 is laminar one rigorously. the flow
region where P, < I could be considered as "quasi-laminar."

In Fig. 5. the region where P, s:: I near the wall and the core
of the enclosure are shown by shaded portion. In the region
where /11> L the flow can be regarded as a real turbulence or
a significant turbulence which has somewhat different mean­
ing from general turbulent flow. According to the inclined

The contours of the dimensionless time-averaged turbulent
kinetic energy. k are plotted in Fig. 6. The tendency of
distributions of k are much similar to that of /11' The differ­
ences between two neighbor contours are 2x lO3. 1 X lO4 and
2x 104 for Grs:: 1x lO1. Gr=5 x 10' and Gr= 1 x 108

• respective­
ly. At the inclined angle of zero, the values of k are high along
the hot and cold walls while very low along the walls of linear
temperature. As the inlcined angle increases the values of k
near the walls of linear temperature become high. This fact
could be explained as follows: (lJ Since the slope of the
walls of linear temperature becomes steeper. the flow can be
accelerated. (2) This makes shear stress larger so that the

Ra = 6 X 10 6 Ra =1 X 10 7 Ra = 1 X 10 8

Fig. 6 Numerical contour maps for turbulent kinetic energy
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increasing amount of the turbulent kinetic energy, due to
shear stress exceeds the decreasing amount of that due to
buoyancy. The contours of the rate of dissipation of turbulent
kinetic energy, E, are not presented because its value can be
readily obtained from the definition except the region very
close to the wall.

3.5 Heat Transfer

The local and average Nusselt numbers along the hot wall
are defined as follows;

(14)

(15)

location of the maximum local Nusselt number in the inclined
enclosures shifts by L/4 toward y-direction as compared with
that at the zero inclination. In addition, the values of maxi­
mum local Nusselt number increase as the inclined angle
increases. On the wall of linear temperature, one can see the
peculiar effect of the inclined angle in Fig. 8. Because of the
inclined angle, there are one more peak and one more relative
minimum at the distributions of the local Nusselt number as
compared with that at the zero inclination. Because of incli­
nation, there occurs a reverse flow region with relatively
lower velocity near the top and bottom corners as shown in
Fig. 3. It is believed that the rate of convective heat transfer
becomes small temporally in this reverse flow region.

The average Nusselt number distributions on the hot wall

Gr=1.108

5.107

Gr =1_107
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Fig. 9 Effect of inclined angle on NUH for various Grashof
number
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Fig. 10 Effect of inclined angle on NUL for various Grashof
number
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Fig. 8 Distributions of local Nusselt number along the wall of
linear temperature
Gr=lxIO', 8=0', 30', 45"' and 50'
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Fig. 7 Distributions of local Nusselt number along the hot wall
Gr=!xIO', 8=0', 30', 45" and 50'
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The Nusselt numbers on the wall of linear temperature,
NUL and NUL, are defined similarly as along the hot wall.
Because of the point symmetric characteristics of present
geometry, the Nusselt numbers along the cold wall and the
remaining wall of linear temperature do not need to be
defined.

Figure.7 and Fig.S show the distributions of the local Nusselt
number along the hot wall and along the wall of linear
temperature at each inclined angle when Gr= 107

• After con­
tinuous investigations about the local Nusselt number at
other Grashof number, even though the magnitudes of them
are larger with the Grashof number, Fig. 7 and Fig. 8 could be
considered as a typical example. On the hot wall (Fig. 7), the
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--------------------- ----------------.-----
s\rJ~y 8·0' & Fraikin

6.)J' (1980)

" 6,45'

" 6,60'

Ozoo(\985)

Mar....los(1984)

Gr

Fig. 11 Comparison of the computed average Nusselt number on
the hot wall with correlation of Ozoe (985), Markatos
(984) and Fraikin (980)

and the wall of linear temperature are shown in Fig. 9 and
Fig. 10, respectively. The Nu~ of the inclined enclosure is
greater than that at the zero inclination. For example, Nu~
has maximum va:!ue at 8=30 0 which is almost 10% higher
than that at 8=0". But NUL becomes small as the inclined
angle increases. To show the correlation between NUH and
the Grashof number in the inclined enclosure, Fig. 11 is
plotted. Although the fluid properties and the boundary condi·
tions were not exactly same, the correlations in the square
enclosure of the zero inclination by Ozoe et al. (1985), Makar­
tos et al. (1984) and Fraikin et al. (1980) are plotted together
for reference.

4. CONCLUSION

Although the accuracy of the present results should be
compared with future experimental work, the application of
the k-c turbulence model to an enclosed buoyancy driven
recirculating turbulent flow gives physically reliable results.

From this study, we make the following conclusions:
(I) The existence of the inclined angle

(a) generated the counter-rotating flow region in the
enclosure,

(b) made stratification of the temperature field dis­
appear and

(c) made one more peak and one more relative mini­
mum in the distributions of the local heat transfer.
(2) As the inclined angle increased from zero degree,

(a) the intensity of base flow increased and
(b) the area portion in enclosures being occupied by the

significant turbulence, where turbulent viscosity is larger
than molecular one, became larger.
(3) When Gr::?-5x 107 and 8::?-45', the whole flow region in
the enclosures became the significant turbulence one.

(4) The maximum values of average heat transfer rate on
the hot wall was shown at 30" and was almost 10% higher
than that at zero degree.
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